

# Preliminary Dredge Project Estimate V2

#### **Huron Pointe- Archer Canal**

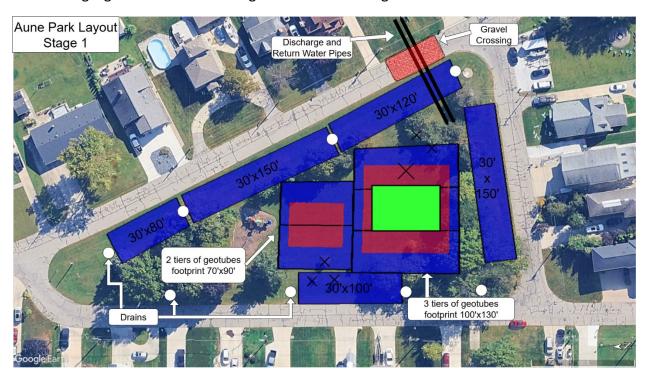
Harrison Twp. 10/06/2025

Aquatic Hydraulic Dredging, LLC (AHD) has prepared this estimate using all available preliminary data, as well as visiting the site in person to determine the most accurate estimate for your project. The numbers in this estimate were based on dredging the full width of the canal to a max depth of 6.5ft at the center and tapering up near the shore over the entire length of the canal measuring approximately 4,400ft long. This depth is in reference to the water level observed during our onsite visit June 5<sup>th</sup>, 2025 and is based off an average removal depth of 2.5ft.

AHD has worked closely with another industry professional specializing in geotubes and polymer treatment in order to verify beyond a reasonable doubt that the previously proposed plan and geotube sites will not offer adequate storage capacity to complete this project, as well as investigated and ruled out the possibility of using any larger sites in the area. Of the 8 samples taken the average percent solids was 32%, with this data we cannot reasonably expect sediment volume to decrease as substantially as the previous plans suggest (See Dewatering Performance Trial). AHD instead proposes the following detailed plan for removing and dewatering dredged material using only Aune park in 2 stages.

# **Timing**

AHD expects that dredging could be complete by year end 2026 with the exception of final material haul off and site remediation. To complete this project within the expected timeframe AHD would have to start this project early spring 2026. This would mean all details, contracts, permits and permission must be in place prior to March 2026. We can begin mobilization March 2026 with dredging beginning mid-March 2026. This would result in Stage 1 dredging completion by Memorial Day (5/25/2026). Material Haul off for Stage 1 would be completed in the month of August with setup for Stage 2 Beginning immediately after. Stage 2 Dredging would begin approximately Labor Day (9/7/2026) and would be completed prior to year end. The entire canal being dredged will need to be closed until Memorial Day, then will re-open until Labor Day, from then the canal will be closed again until the end of the season. Material haul off and site remediation from Stage 2 would happen according to your preference in either late spring/summer 2027 or could wait until after Labor Day if preferred.








### Stage 1 Site Prep and Haul Off

Using geotextile tube dewatering at Aune park will require the project to be completed in 2 stages due to the limited storage capacity of the site. In Stage 1 we would complete dredging for the northern ½ of the canal pumping all dredge material to Aune park. Site prep for Stage 1 will require that we remove a few trees as well as the hill near the southeast corner of the geotube site and install a liner to prevent erosion. We will also remove a few small trees at the northwest corner of the site. A liner 20'x120' tucked under the tubes and draped over strawbales and weighed down with sandbags will be used to divert water away from the playground. We would need to route (2) 8" pipes to/from the canal to the park to handle discharge from the dredge and return water. These pipes would cross over the road near the southeast corner of the park and would be covered with compactable gravel that can safely be driven over. Use of a return water pump has been included due to unknow flow capacity of the drains. The road crossing can be removed immediately after dredging is complete and while the sediment dries. Once the sediment is ready to be hauled, we will begin trucking it off while establishing a gravel haul road through the center of the geotube site.





# Stage 2 Site Prep and Haul Off

After material haul off from Stage 1 the park will not have enough vegetation to prevent erosion. Rather than waiting to establish vegetation for Stage 2 AHD will immediately install poly liners over the entire laydown area to protect it from erosion and allow us to immediately begin Stage 2. For Stage 2 the haul road will be left in place and the road crossing reconstructed. In this Stage the remaining southern ½ of the canal will be dredged in the same manner as the first using new geotubes and the same layout. As soon as this stage of dredging is complete, we will again remove the road crossing. Material haul off from Stage 2 would happen according to your preference in either late spring/summer 2027 or could wait until after Labor Day if preferred. Upon completion of material haul off we will begin site remediation.





#### Site Remediation

Site remediation of Aune Park will include site cleanup, haul off and finish grading of all areas disturbed during the dewatering process. After an acceptable grade is met, AHD will reseed the entire geotube site with your choice of standard grass seed using straw, erosion control blankets and silt fence where necessary.

### Pipe Route and Navigation

For this project the dredge pipe will be floated, clearly marked every 40ft and will severely limit navigation of the canal during the project. Between stages AHD will deconstruct all dredge equipment to whatever extent required to please all parties and allow for navigation, however during dredging, the canal will need to be closed. We must also have access to an open lot on the canal in order to stage equipment and assemble pipe. This lot will need to be relatively large, level, dry and open as well as have easy access to the canal without major concern for damaging docking equipment or seawalls. A natural shoreline or stone seawall would be preferred.

# **Project Cost**

AHD estimates the "all in" dredging cost to dredge the canal as described using geotubes at Aune Park to be \$1,020,164. This pricing is based on completing the project as described in this estimate with everything included. Stage 1 accounts for \$494,832 of the total cost and Stage 2 accounts for \$525,332 of the total project cost. The additional expense for Stage 2 is attributed to the requirement of a liner and site remediation and should not affect the even distribution of cost between all canal residents. The customer will be responsible for obtaining all permits and permissions required. It was also assumed that a gravel train will not exceed the load capacity of the bridge when hauling material off.

### DEWATERING PERFORMANCE TRIAL AQUATIC HYDRAULIC DREDGING PORT HURON PROJECT

#### For:

Aquatic Hydraulic Dredging
Attn: James Schaedig

Email: <a href="mailto:ThatDredgeGuy@gmail.com">ThatDredgeGuy@gmail.com</a>

Cell: (989) 335-5043

By:

WaterSolve, LLC 5031 68th St., SE Caledonia, MI 49316 www.gowatersolve.com 616-575-8693



June 11<sup>th</sup>, 2025



#### 1. Scope of Work

WaterSolve, LLC was tasked to perform a geotextile tube dewatering performance trial and Cone Tests on sediment samples collected for Aquatic Hydraulic Dredging's "Port Huron Project". The objectives of these dewatering trials were to identify chemical conditioning program(s), identify polymer flocculant(s), and dosing rate(s) for a potential geotextile tube dewatering application. The objectives of subsequent Cone tests were to measure total solids of the flocculated, contained, and dewatered residual after passage through the geotextile tube fabric.

#### 2. Materials & Methods

Eight five-gallon samples of sediment were received at WaterSolve's Laboratory (Caledonia, MI) in June 2025. Samples of residual were mixed, and 150-mL samples were placed in graduated, glass jars. Several polymers (emulsions) were "made-down" (200-mL) at a 0.5% concentration for this dewatering trial. Polymer (1 to 10-mL; 33.3 to 333-ppm) was added to a 150-mL sample with a plastic syringe and moderately tumbled five to seven times. Observations of water release rate, water clarity, and flocculent appearance were recorded on appropriate data sheets (Appendix A). Polymer(s) that flocculated and dewatered these residuals most effectively were re-evaluated with lower doses to isolate the most efficient dewatering and flocculating polymer(s). A Hach DR 2800 with a measurable limit of up to 750-mg/L suspended solids was used to measure Total Suspended Solids (TSS) after the sample was poured through the geotextile tube fabric.

Percent total solids (dry weight) of the sediment sample in-situ, sediment sample homogenized, and dewatering cake (captured on the geotextile tube fabric) of the sediment sample were measured (Appendix B).

#### 3. Results

Chemical conditioning with Solve 164 was determined to flocculate and dewater the residual most effectively compared to the other chemical conditioning programs (Appendix A). Water release volume and flocculent appearance were good to excellent when a 5-mL (167-ppm, 1.9-lbs/dry ton) dose of Solve 164 was added to 150-mL of sediment sample.

The sediment samples in-situ measured at 32.2-percent solids on average. The sediment samples homogenized measured at 17.6-percent solids on average. After passing 1,000-mL of conditioned (167-ppm of Solve 164) sediment samples through the geotextile tube fabric, percent solids increased to 35.6-percent after sixty minutes. From this 1,000-mL sample, 340-mL and 650-mL of water was released in one minute and sixty minutes, respectively, after passage through the fabric. Total suspended solids (TSS) measurements were taken on the



filtrate after passage through the geotextile tube fabric. The TSS of the filtrate measured 157-mg/L.

#### 4. Recommendations

We recommend an application of Solve 164 (167-ppm, 1.9-lbs/dry ton) for dewatering residuals in a geotextile tube application to pass a paint filter test for subsequent disposal. The dose may vary based on the solids concentration in the pumped line. Additional evaluation is recommended for determining optimal inline percent solids thresholds for geotextile tube performance including filtrate release and solids consolidation over time.

Solve 164 is required to be made-down at 0.5-percent with a polymer make-down unit or aged in batch/feed tanks prior to injection into the residual line. Moderate to high mixing energy is required between the polymer introduction points and the geotextile tube containers (e.g., two to three bends in the discharge line and/or inline static mixers).

Expected time to being able to pass a Paint Filter Test is unpredictable in a geotextile tube container from these bench-scale experiments. An onsite, laboratory hanging bag or geotextile tube dewatering trial (GTDT) may be used and is recommended if the timeline for achieving project goals of dry weight solids and geotextile tube filtrate characteristics is in question for this application. Additional dewatering evaluations over time are recommended if project objectives for consolidation are greater than passing a Paint Filter Test.

Please note, while a composite sample may give us an indication of an average treatment scenario, it does not indicate pockets of concern for treatment effectiveness or areas that may require a higher or lower dose of chemistry, or contain higher in situ solids, since the areas of concern may be masked by factors of dilution from other areas.

Due to potential variability of the material, daily on-site testing and chemical conditioning verification are recommended during pumping operations.

WaterSolve LLC does not make any implied warranty of any kind. Customer is solely responsible for determining the means and methods of the Product(s) use and whether or not Product(s) is suitable or desirable for Customer's intended uses. Customer agrees not to make any claim against WaterSolve LLC based upon, or arising out of or relating to any advice or any technical information given to the Customer by WaterSolve LLC for information purposes only and shall indemnify and hold WaterSolve LLC harmless from any and all claims asserted by any third party arising out of or related to the Customer's use of WaterSolve LLC's Product(s). Any technical information if given by WaterSolve LLC to the Customer is without any consideration and use of such information by Customer be at consumer's own risk and shall not relieve the Customer from ultimate liability to ensure Product(s) are used properly per Project and Product(s) specifications.



# Appendix A - Dewatering Trial

|          | <i>-</i>                        |                          |                        |              |                                         |                                         | Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------|---------------------------------|--------------------------|------------------------|--------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          |                                 | WaterSolve, LL           | .c                     |              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| WaterS   | olve <sub>us</sub>              | Clearly thinking about y | !                      | DEWATER      | RING PERF                               | ORMANCE TRIAL                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | Date: 6/9/25<br>Analyst: Nick I |                          |                        |              | Customer: AHD - fert Heren<br>Location: |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | ŀ                               | Kristen L                | 1=Best                 | 6=Worst      | Equipment                               | in Service:                             | Sample 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Jar      |                                 | Polymer Dosage           |                        |              | Water                                   | Floc                                    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Number   | Name                            | (mL)                     | (mL)                   | Rate         | Clarity                                 | Appearance                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                                 |                          |                        | (1-6)        | (1 - 6)                                 | (1 - 6)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | Polymer make                    | -down concentration      | on = <u>, 5     </u> % |              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          | Dilution of test                | t sample = 🔏             |                        |              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1        | 137                             | 1                        | 150 mL                 |              | 6                                       | 6                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2        | 1                               | 2                        |                        |              | 6                                       | 6                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3        | ļ                               | y                        |                        |              | ς                                       | S                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4        |                                 | 8                        |                        |              | 3                                       | 3                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5        | 00000                           | 10                       |                        |              | 1-2                                     | 1-2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6<br>7   | 2230 C                          | 5                        |                        |              | 2-3                                     | 3                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 8        | 205700                          | 1/3                      |                        | <b>_</b>     | 1-2                                     | 2                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 9        | 2168                            | 167                      |                        |              | 1-2                                     | 1-2                                     | - Overdosed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 10       | 2108                            |                          | <del>  </del>          | <b>-</b>     | 1.2                                     | 1-1-                                    | - 08e. 90ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 11       | 153                             | 5                        | <del></del>            | <del> </del> | <b>8</b> 6                              | 6                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 12       | 162                             | ĭ                        |                        |              | - 7                                     | 70                                      | Ge/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 13       | 164                             |                          |                        |              | 3:-(8                                   | 3                                       | OK ( ) to the Neummended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 14       | X701                            |                          |                        |              | - B                                     | h                                       | The state of the s |  |
| 15       | 303                             |                          |                        |              | 6                                       | 16                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 16       | 22/DA                           |                          |                        |              | G                                       | .6                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 17       | 9330"                           |                          |                        |              | H,                                      | 34                                      | 0.K ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 18       | 9350                            |                          |                        |              | 6                                       | 6                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 19       | 63                              | η-                       |                        |              | 3                                       | 35/4                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 20       | 4, 4,                           | - 070                    |                        |              |                                         | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 21       | 126/164                         | 2/2                      |                        |              | Ý                                       | 6                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 22       | 296 //64                        | 972                      |                        |              | 4                                       | 4-5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 23       | 216/164                         | 2/2                      |                        |              | 26.                                     | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 24       | 96161164                        | 2/3                      |                        |              | 3-4                                     | 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 25       | 161                             | 4                        |                        |              | 1-84-                                   | 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 26       | lebf                            | - φ                      |                        |              | 3                                       | 3-4                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 27<br>28 | ,                               | `                        |                        |              |                                         |                                         | 1017-1117-1117-1117-1117-1117-1117-1117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 20       |                                 |                          | L                      | l            |                                         | L                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| Cone Test / RDT: _ | mL sample conditioned | withmL of | poured three | u Geotextile Fabric.      |        |
|--------------------|-----------------------|-----------|--------------|---------------------------|--------|
| Filtrate Quality:  | TSSmg/L               | Turbidity | NTU          | Filtrate collected@ 1min: | 60min: |



|   |                                         | <b>/</b>         | WaterSolve, LL                                     |                    |             |                            |                                                  |                      |
|---|-----------------------------------------|------------------|----------------------------------------------------|--------------------|-------------|----------------------------|--------------------------------------------------|----------------------|
| ١ | WaterSe                                 | alve             | •                                                  |                    |             |                            |                                                  |                      |
| ١ | *************************************** |                  | Clearly thinking about yo                          |                    | !           | DEWATE                     | RING PERFO                                       | DRMANCE TRIAL        |
| ı |                                         | Date:            | : (e/9/ lh<br>: Knotine L<br>Nick I 1=Best 6=Worst |                    |             | Customer: AHD - Port Honon |                                                  |                      |
|   |                                         | Analyst:         | Knothne (                                          | _                  |             | Location:                  |                                                  |                      |
| ı |                                         |                  | Nick T                                             |                    |             | Equipment                  | in Service:                                      | Sample 1, 2, 3, 5, 6 |
|   | Ta-                                     | Martin           |                                                    |                    | 6=Worst     | 1 19/0400                  | Flan                                             |                      |
| ŀ | Jar<br>Number                           | Polymer<br>Name  | Polymer Dosage<br>(mL)                             | (mL)               | Rate        | Water<br>Clarity           | Floc                                             | Comments             |
|   | Number                                  | Hame             | (IIIL)                                             | (IIIL)             | (1-6)       | (1 - 6)                    | Appearance<br>(1 - 6)                            |                      |
| = |                                         | Polymer make     | -down concentration                                | on = 17.5 %        |             | 1 (1 0)                    | (1-0/                                            |                      |
|   |                                         | Dilution of test | t sample = $\mathcal{U}$                           | )II = <u>1/.</u> / |             |                            |                                                  |                      |
|   | 1                                       | 160              | 5                                                  | 160 ml             | 74          | 12-0                       | 3                                                |                      |
|   | 2                                       | 10-9             | 13                                                 | • • •              |             |                            |                                                  |                      |
|   | 3                                       | 164              | 5                                                  | (50 ml             |             | 3-4                        | 3.                                               |                      |
|   | 4                                       | , ,              |                                                    |                    |             |                            |                                                  |                      |
|   | 5                                       | 164              |                                                    | Bom                |             | 15                         | 2-3                                              |                      |
| _ | 6                                       |                  |                                                    |                    |             | 7                          |                                                  |                      |
| _ | 7                                       | 164              | 5                                                  | 1510               |             | 3-4                        | 5                                                |                      |
|   | <u>8</u><br>9                           | 160              |                                                    | 150                |             | 101.                       |                                                  |                      |
|   | 10                                      | 109              |                                                    | 15.0               |             | 3-4                        | <del>                                     </del> |                      |
|   | 11                                      | 100              | 3,5 ml                                             | 150                |             | 3/100                      | 3                                                |                      |
|   | 12                                      | W W              | 715 1111                                           |                    |             | 711                        | 7                                                |                      |
|   | 13                                      | in Co            | K                                                  | (50·               |             | 3                          | 3                                                |                      |
|   | 14                                      | 16 G             | 3                                                  | 150                |             | 3                          | 2-3                                              |                      |
|   | 15                                      |                  |                                                    |                    |             |                            | 2                                                |                      |
|   | 16                                      | 169              | 3                                                  |                    |             | 2-4                        | 203                                              |                      |
|   | 17                                      |                  | 4                                                  |                    |             | 7g-4                       | 2-3                                              | -> Best, acomend     |
|   | 18<br>19                                |                  |                                                    |                    |             | 3-4                        | 2-3                                              |                      |
|   | 20                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 21                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 22                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 23                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 24                                      |                  |                                                    |                    | <del></del> |                            |                                                  |                      |
|   | 25                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 26                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 27                                      |                  |                                                    |                    |             |                            |                                                  |                      |
|   | 28                                      |                  |                                                    |                    |             |                            | . –                                              |                      |



# Appendix B - Percent Solids

| Customer Name/Application Date 6/9/25                                                     | Aquatic Hydrolavic Dredging - Port Horon  Technician Nick I Oven Temperature 105°C                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dish (dry) = $\frac{(17.9)}{g}$<br>Dish, sample (wet) – Dish (dr                          | Dish, Sample (wet) = $\frac{163.339}{1000}$ g Dish, Sample (dry) = $\frac{89.414}{1000}$ g Dish, Sample (dry) = $\frac{115.408}{1000}$ (A) Dish, sample (dry) – Dish (dry) = $\frac{41.483}{1000}$ (B) B ÷ A x 100 = $\frac{35.9}{1000}$ % Dry Weight Solids                              |
| Dish, sample (wet) – Dish (dr. Total Solids                                               | Dish, Sample (wet) = $\frac{92 \cdot 115}{9}$ g Dish, Sample (dry) = $\frac{98 \cdot 229}{9}$ g Dish, Sample (dry) = $\frac{145 \cdot 116}{9}$ (A) Dish, sample (dry) – Dish (dry) = $\frac{51 \cdot 29}{9}$ (B) B ÷ A x 100 = $\frac{25 \cdot 2}{9}$ % Dry Weight Solids                 |
| Dish (dry) = $\frac{\sqrt{1 \cdot L^0 / g}}{\text{Dish, sample (wet)}}$ Dish (dr          | Dish Number $\frac{45}{100}$ Dilution $\frac{10}{100}$ Dilution $\frac{10}{100}$ Dish, Sample (wet) = $\frac{161.553}{100}$ g Dish, Sample (dry) = $\frac{36.042}{100}$ g Dish, Sample (dry) – Dish (dry) = $\frac{36.755}{100}$ (B) B ÷ A x 100 = $\frac{32.7}{100}$ % Dry Weight Solids |
| Dish (dry) = $\frac{\sqrt{9} \cdot 658 \text{ g}}{\text{Dish}}$ , sample (wet) – Dish (dr | Dish Number $3$ Dilution $10 - 5.70$ Dish, Sample (wet) = $140.177$ g Dish, Sample (dry) = $72.882$ g $y = 91.519$ (A) Dish, sample (dry) – Dish (dry) = $14.114$ (B)  B ÷ A x 100 = $16.5$ % Dry Weight Solids                                                                           |



| Customer Name/Application                                                                                                            | AHD -                                                                                                                                                                                                   | Port Haron                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                      |                                                                                                                                                                                                         | Oven Temperature 195 °C                                                                                                                                                                                        |
| Sample ID_ 5 - 6-51                                                                                                                  |                                                                                                                                                                                                         | Dish Number 47 Dilution in -Situ                                                                                                                                                                               |
|                                                                                                                                      |                                                                                                                                                                                                         | 128, 413g Dish, Sample (dry) = $82.479g$                                                                                                                                                                       |
| Dish, sample (wet) – Dish (d                                                                                                         | (ry) = 79.072 (A)                                                                                                                                                                                       | Dish, sample (dry) – Dish (dry) = $33.138$ (B)                                                                                                                                                                 |
| Total Solids                                                                                                                         | $B \div A \times 100 = 41.9$                                                                                                                                                                            | % Dry Weight Solids                                                                                                                                                                                            |
| Sample ID6                                                                                                                           |                                                                                                                                                                                                         | Dish Number Dilution In - Situ                                                                                                                                                                                 |
|                                                                                                                                      | Dish, Sample (wet) =                                                                                                                                                                                    | 1/4.421 g Dish, Sample (dry) = $65.109$ g                                                                                                                                                                      |
| Dish, sample (wet) – Dish (d                                                                                                         | lry) = 65.941 (A)                                                                                                                                                                                       | Dish, sample (dry) – Dish (dry) = $16.629$ (B)                                                                                                                                                                 |
| "NI                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                |
| Total Solids                                                                                                                         |                                                                                                                                                                                                         | 2 % Dry Weight Solids                                                                                                                                                                                          |
| Total Solids                                                                                                                         | $B \div A \times 100 = 25.7$                                                                                                                                                                            |                                                                                                                                                                                                                |
| Total Solids Sample ID                                                                                                               | $B \div A \times 100 = 25$ .                                                                                                                                                                            | گ % Dry Weight Solids                                                                                                                                                                                          |
| Total Solids  Sample ID $\frac{7}{2}$ Dish (dry) = $\frac{50.170}{2}$ g                                                              | $B \div A \times 100 = \underline{25}$ .  Dish, Sample (wet)                                                                                                                                            | 2 % Dry Weight Solids  Dish Number 22 Dilution in Situ                                                                                                                                                         |
| Total Solids  Sample ID $\frac{7}{2}$ Dish (dry) = $\frac{50.170}{2}$ g                                                              | B ÷ A x 100 = $25$ .  Dish, Sample (wet) = $75$ . $497$ (A)                                                                                                                                             | 2 % Dry Weight Solids  Dish Number $22$ Dilution $n - 57u$ $125-667$ g Dish, Sample (dry) = $71.287$ g                                                                                                         |
| Total Solids  Sample ID 7  Dish (dry) = 50,170 g  Dish, sample (wet) – Dish (d)  Total Solids                                        | B ÷ A x 100 = $25.7$<br>Dish, Sample (wet) = $\frac{75.497}{A}$ (A)<br>B ÷ A x 100 = $28.0$                                                                                                             | % Dry Weight Solids  Dish Number $22$ Dilution $n - Site$ $126.667$ g Dish, Sample (dry) = $71.287$ g  Dish, sample (dry) – Dish (dry) = $21.117$ (B)  % Dry Weight Solids                                     |
| Total Solids  Sample ID 7  Dish (dry) = $50.170$ g  Dish, sample (wet) – Dish (dry) = $50.170$ g  Total Solids  Sample ID 8 – (1944) | $B \div A \times 100 = \underline{25}.$ Dish, Sample (wet) = $A \times 100 = \underline{25}.$ $B \div A \times 100 = \underline{25}.$ $A \times 100 = \underline{25}.$ $A \times 100 = \underline{25}.$ | 2 % Dry Weight Solids  Dish Number $22$ Dilution $n - 5 + 6 = 20$ Dish, Sample (dry) = $71.287$ g  Dish, sample (dry) - Dish (dry) = $21.117$ (B)                                                              |
| Total Solids  Sample ID  Dish (dry) = $50.170$ g  Dish, sample (wet) – Dish (d)  Total Solids  Sample ID  Dish (dry) = $50.820$ g    | Dish, Sample (wet) = $\frac{75.497}{A} = \frac{28.0}{A}$ $A \times 100 = 28.0$ $A \times 100 = 28.0$ $A \times 100 = 28.0$ Dish, Sample (wet) =                                                         | 2 % Dry Weight Solids  Dish Number $22$ Dilution $n-Situ$ $125-667$ g Dish, Sample (dry) = $71.287$ g  Dish, sample (dry) – Dish (dry) = $21.117$ (B)  % Dry Weight Solids  Dish Number $20$ Dilution $n-Situ$ |



| Customer Name/Application                                                                                                                 | AHD - Port Huron                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date <u>6/9/25</u>                                                                                                                        | Technician Nick T Kristing L Oven Temperature 105°C                                                                                                      |
| Sample ID 4 - 6.5                                                                                                                         | Dish Number 23 Dilution Noneganized                                                                                                                      |
|                                                                                                                                           | Dish, Sample (wet) = $101.184$ g Dish, Sample (dry) = $57.234$ g                                                                                         |
| Dish, sample (wet) - Dish (d                                                                                                              | $lry) = \underline{53.483} \text{ (A)}  Dish, sample (dry) - Dish (dry) = \underline{9.533} \text{ (B)}$                                                 |
| Total Solids                                                                                                                              | $B \div A \times 100 = 17.8$ % Dry Weight Solids                                                                                                         |
|                                                                                                                                           | Dish Number 49 Dilution wmogenbec                                                                                                                        |
| Dish (dry) = $48.416$ g                                                                                                                   | Dish, Sample (wet) = $544g$ Dish, Sample (dry) = $58.268g$                                                                                               |
| Dish, sample (wet) - Dish (d                                                                                                              | $lry) = \underline{54,128}  (A)  Dish, sample (dry) - Dish (dry) = \underline{9,852}  (B)$                                                               |
| Total Solids                                                                                                                              | $B \div A \times 100 = \frac{18.2}{}$ % Dry Weight Solids                                                                                                |
| Sample ID                                                                                                                                 | Dish Number 49 Dilution Wornogenized                                                                                                                     |
| Dish (dry) = $\frac{47,170}{g}$                                                                                                           | Dish, Sample (wet) = $\frac{100.032}{9}$ g Dish, Sample (dry) = $\frac{55.829}{9}$ g                                                                     |
| Bid I a Billia                                                                                                                            |                                                                                                                                                          |
| Dish, sample (wet) – Dish (d                                                                                                              | $lry) = 52 \cdot 86 \cdot (A)  Dish, sample (dry) - Dish (dry) = 8 \cdot 659  (B)$                                                                       |
| Total Solids                                                                                                                              | $(ary) = 52.86 , (A)  \text{Dish, sample (dry)} - \text{Dish (dry)} = 8.659  (B)$ $B \div A \times 100 = 6.4  \text{\% Dry Weight Solids}$               |
| Total Solids                                                                                                                              | $B \div A \times 100 = 16 \cdot 4$ % Dry Weight Solids                                                                                                   |
| Total Solids Sample ID 4 1 - A                                                                                                            |                                                                                                                                                          |
| Total Solids  Sample ID $\frac{1}{4}$ $\frac{1}{4}$ A  Dish (dry) = $\frac{4}{4}$ $\frac{3}{4}$ $\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{4}$ | B ÷ A x 100 = 16.4 % Dry Weight Solids  The Bridge Dish Number 53 Dilution Wingspriled                                                                   |
| Total Solids  Sample ID $\frac{1}{4}$ $\frac{1}{4}$ A  Dish (dry) = $\frac{4}{4}$ $\frac{3}{4}$ $\frac{4}{4}$ $\frac{4}{4}$ $\frac{4}{4}$ | B ÷ A x 100 = $16.4$ % Dry Weight Solids  The Bridge Dish Number $53$ Dilution Managemiles  Dish, Sample (wet) = $9194$ g Dish, Sample (dry) = $56.33$ g |




| Date 6 191 25 Technician Nick T Knotne L Oven Temperature 105°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID 5 Dish Number 5 Dilution $\frac{12 e^{-2}}{12 e^{-2}}$ Dish, Sample (wet) = $\frac{19.442}{2}$ g Dish, Sample (dry) = $\frac{58.977}{2}$ g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dish, sample (wet) – Dish (dry) = $61.564$ (A) Dish, sample (dry) – Dish (dry) = $11.099$ (B)  Total Solids B ÷ A x 100 = $18.0$ % Dry Weight Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID $\bigcirc$ Dish Number $\bigcirc$ Dilution $\bigcirc$ Dilution $\bigcirc$ Dish $\bigcirc$ Dish $\bigcirc$ Dish, Sample $\bigcirc$ |
| Sample ID 7 Dish Number 17 Dilution Number 2 Dish, Sample (dry) = $\frac{43.657}{9}$ Dish, Sample (wet) = $\frac{17.945}{9}$ Dish, Sample (dry) = $\frac{57.617}{9}$ Dish, sample (wet) – Dish (dry) = $\frac{74.28}{9}$ (A) Dish, sample (dry) – Dish (dry) = $\frac{13.96}{9}$ (B)  Total Solids B ÷ A x 100 = $\frac{18.8}{9}$ % Dry Weight Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample ID $g$   Grant material Dish Number $g$   Dilution hamogenized Dish (dry) = $g$   Dish, Sample (wet) = $g$   Dish, Sample (dry) = $g$   Dish, Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| •                                                                      | nualic thydrolavic Disagging - Port Horon<br>Innician Kristine L, Nick I Oven Temperature 105°C                                                       |     |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Dish (dry) = $48.579$ g Dish,<br>Dish, sample (wet) – Dish (dry) = $5$ | Sample (wet) = $99.443$ g Dish, Sample (dry) = $66.71$<br>50.864 (A) Dish, sample (dry) – Dish (dry) = $18.136$ (Day 100 = $35.6$ % Dry Weight Solids | 5 g |
| Dish (dry) =g Dish, Dish, sample (wet) - Dish (dry) =                  | Dish Number Dilution  Sample (wet) = g Dish, Sample (dry) =  (A) Dish, sample (dry) – Dish (dry) = (1)  A x 100 = % Dry Weight Solids                 | g   |
| Dish (dry) =g Dish, Dish, sample (wet) - Dish (dry) =                  | Dish Number Dilution                                                                                                                                  | g   |
| Dish (dry) =g Dish, Dish, sample (wet) - Dish (dry) =                  | Dish Number Dilution, Sample (wet) = g Dish, Sample (dry) =  (A) Dish, sample (dry) – Dish (dry) = ( A x 100 = % Dry Weight Solids                    | g   |



# Appendix C – Photographs



One hundred fifty milliliters of unconditioned sediment sample (top), One hundred fifty milliliters of sediment sample conditioned with Solve 164 (bottom).



One thousand milliliters of sediment sample conditioned with Solve 164 was poured through geotextile tube fabric, the dewatered cake (left) and captured filtrate (right) are displayed above.



# Appendix D - Chain of Custody

SDS - Available upon request.